
SM-2302 Software for Mathematicians
Introduction & Getting Started

Drs. Haziq Jamil & Huda Ramli
Mathematical Sciences, Faculty of Science, UBD
https://sm2302.github.io

Semester I 2022/23

https://sm2302.github.io


Overview

Admin
Getting started
Module contents

Purpose of mathematical software

Getting started
Instructions
Software overview
MATLAB

1 / 20



Admin

� Lecturer information
Dr. Haziq Jamil
Assistant Professor in Statistics
Room M1.09
haziq.jamil@ubd.edu.bn

Dr. Huda Ramli
Lecturer in Applied Mathematics
Room M1.04
huda.ramli@ubd.edu.bn

� IMPORTANT: Read the syllabus.
� Weekly contact hours

� Lectures: 2 hours in ICTC Lab 7 on Thursdays 2:10 PM
� Tutorials: 2 hours in ICTC Lab 7 on Saturdays 2:10 PM

� Be aware of schedule and important deadlines.
� Check Canvas regularly for announcements and course materials.

2 / 20



Module description
Mathematical software is what bridges higher mathematics to real world applications.
On completing this module, students should be able to use MATLAB and R to effectively
implement mathematical solutions to real world problems. They should also be able
to produce publication-quality mathematical documents using LATEX. This module
provides the computing skills required for an applied mathematics final year project.

Contents
1. Learning MATLAB and R languages for mathematical applications.
2. MATLAB specific outomes: Basic operations, programming, numerical techniques and root

finding.
3. R specific outcomes: Logic and types, data frames and matrices, data wrangling, and

visualisations.
4. Preparation of report-style documents using LATEX.
5. Version control and social coding using Git and GitHub.

3 / 20



Assessment
Take note that this module is assessed wholly (100%) by coursework.
Formative assessment

� Lab-based tutorials
Summative assessment

� [20%] 4 � online quizzes
� [20%] 2 � mini individual assignments
� [30%] 2 � mini group assignments
� [30%] 1 � project assignment with written report

A note on teams
� You may self-sign up to form teams (max in a group is 4).
� Peer evaluation after completion.
� Everyone is expected to contribute equal effort.

4 / 20



Assessment
Take note that this module is assessed wholly (100%) by coursework.
Formative assessment

� Lab-based tutorials
Summative assessment

� [20%] 4 � online quizzes
� [20%] 2 � mini individual assignments
� [30%] 2 � mini group assignments
� [30%] 1 � project assignment with written report

A note on teams
� You may self-sign up to form teams (max in a group is 4).
� Peer evaluation after completion.
� Everyone is expected to contribute equal effort.

4 / 20



Collaboration, sharing and code reuse
� All graded assignments must be your own individual work, except for the group

assignments (these are expected to be collaborative in nature). Do not share your code,
otherwise.

� We are aware that the internet is a great resource. You may make use of any of these
resources, but you must explicitly cite where you obtained any code your directly
use or use as inspiration in your solutions.

� Any recycled code that is discovered and is not explicitly cited will be treated as
plagiarism, regardless of source.

Penalties for plagiarism
� A written, formal reprimand kept in Faculty records; and/or
� Resubmission of assignment; and/or
� Reduced assignment marks; and/or
� Fail grade for assignment.

5 / 20



Collaboration, sharing and code reuse
� All graded assignments must be your own individual work, except for the group

assignments (these are expected to be collaborative in nature). Do not share your code,
otherwise.

� We are aware that the internet is a great resource. You may make use of any of these
resources, but you must explicitly cite where you obtained any code your directly
use or use as inspiration in your solutions.

� Any recycled code that is discovered and is not explicitly cited will be treated as
plagiarism, regardless of source.

Penalties for plagiarism
� A written, formal reprimand kept in Faculty records; and/or
� Resubmission of assignment; and/or
� Reduced assignment marks; and/or
� Fail grade for assignment.

5 / 20



Schedule
Week Topic Instructor Assessment

W01: 01/08 – 07/08 Introduction & Getting Started NHR & HJ
W02: 08/08 – 14/08 [MATLAB] Basic operations NHR
W03: 15/08 – 21/08 [MATLAB]Programming NHR

[R] Introduction to R and Rstudio HJ Quiz 1W04: 22/08 – 28/08
[Git] Git and GitHub HJ

W05: 29/08 – 04/09 [MATLAB] Numerical techniques NHR Quiz 2
W06: 05/09 – 11/09 [MATLAB] Root-finding NHR Individual 1
W07: 12/09 – 18/09 [R] Logic and types HJ

19/09 – 25/09 Mid-semester Break
W08: 26/09 – 02/10 [MATLAB] Peer review / presentations NHR Group 1
W09: 03/10 – 09/10 [R] Matrices and data frames HJ Quiz 3
W10: 10/10 – 16/10 [R] The tidyverse HJ
W11: 17/10 – 23/10 [R] Visualisations using ggplot HJ Individual 2
W12: 24/10 – 30/10 [LaTeX] Typesetting reports HJ
W13: 31/10 – 06/11 [LaTeX] Beyond reports NHR Quiz 4
W14: 07/11 – 13/11 [R] Peer review HJ Group 2

6 / 20



Admin

Purpose of mathematical software

Getting started



Purpose of mathematical software
Software is essential for modelling, analysing and calculating numeric, symbolic, or
geometric data.

Generally speaking, mathematical software is very focused:
1. Software calculator: Performs simple mathematical operations.
2. Computer algebra systems: Designed to solve classical algebra equations and problems

in human readable notation.
3. Statistics: Statistical analysis of data.
4. Optimisation: Selecting a best solution from a set of alternatives.
5. Numerical analysis: Numerical approximations for the problems of mathematical analysis.
6. etc.

Remark
While mathematical software produces useful solutions, they very often do not explain why the
solutions are what they are.

7 / 20



How many primes are there?

Theorem 1 (Euclid’s Theorem)
There are infinitely many primes.

� A prime number p 2 N is divisible only
by itself and 1.

� We might attempt to brute force the
answer by writing a software loop.

� Can we prove this theorem by software?

INPUT n
i := 2
count := 0
WHILE i <= n

rem := n % i
IF rem not equal to 0

i := i + 1
count := count + 1

END IF
END WHILE

OUTPUT count

8 / 20



How many primes are there?

Theorem 1 (Euclid’s Theorem)
There are infinitely many primes.

� A prime number p 2 N is divisible only
by itself and 1.

� We might attempt to brute force the
answer by writing a software loop.

� Can we prove this theorem by software?

INPUT n
i := 2
count := 0
WHILE i <= n

rem := n % i
IF rem not equal to 0

i := i + 1
count := count + 1

END IF
END WHILE

OUTPUT count

8 / 20



How many primes are there?

Theorem 1 (Euclid’s Theorem)
There are infinitely many primes.

� A prime number p 2 N is divisible only
by itself and 1.

� We might attempt to brute force the
answer by writing a software loop.

� Can we prove this theorem by software?

INPUT n
i := 2
count := 0
WHILE i <= n

rem := n % i
IF rem not equal to 0

i := i + 1
count := count + 1

END IF
END WHILE

OUTPUT count

8 / 20



How many primes are there?

Theorem 1 (Euclid’s Theorem)
There are infinitely many primes.

� A prime number p 2 N is divisible only
by itself and 1.

� We might attempt to brute force the
answer by writing a software loop.

� Can we prove this theorem by software?

INPUT n
i := 2
count := 0
WHILE i <= n

rem := n % i
IF rem not equal to 0

i := i + 1
count := count + 1

END IF
END WHILE

OUTPUT count
8 / 20



Software affords us insight
Let �(x) be the prime counting function defined to be the number of primes less than or equal
to x , for any x 2 R. Can we intuit a good approximation of �(x)?

A different (but related) question: How far
apart are the prime numbers?

Define the density of primes as �(x)=x . This
gives an idea of the distribution of primes up
to x . It would be interesting to map this out.

Source code from
https://github.com/johnistan/ulam-spirals-R

1 2

345

6

7 8 9 10

11

12

1314151617

18

19

20

21 22 23 24 25

9 / 20

https://github.com/johnistan/ulam-spirals-R


Software affords us insight
Let �(x) be the prime counting function defined to be the number of primes less than or equal
to x , for any x 2 R. Can we intuit a good approximation of �(x)?

A different (but related) question: How far
apart are the prime numbers?

Define the density of primes as �(x)=x . This
gives an idea of the distribution of primes up
to x . It would be interesting to map this out.

Source code from
https://github.com/johnistan/ulam-spirals-R

1 2

345

6

7 8 9 10

11

12

1314151617

18

19

20

21 22 23 24 25

9 / 20

https://github.com/johnistan/ulam-spirals-R


Software affords us insight
Let �(x) be the prime counting function defined to be the number of primes less than or equal
to x , for any x 2 R. Can we intuit a good approximation of �(x)?

A different (but related) question: How far
apart are the prime numbers?

Define the density of primes as �(x)=x . This
gives an idea of the distribution of primes up
to x . It would be interesting to map this out.

Source code from
https://github.com/johnistan/ulam-spirals-R

1 2

345

6

7 8 9 10

11

12

1314151617

18

19

20

21 22 23 24 25

9 / 20

https://github.com/johnistan/ulam-spirals-R


Ulam’s spiral

� Prominent diagonal, horizontal
and vertical lines containing large
number of primes.

� Not unsurprising, as these
correspond to certain
prime-generating polynomials
such as x2 � x + 41 (Euler’s).

� Nonetheless, connected to many
unsolved areas of mathematics!

� Riemann Hypothesis
� Goldbach’s conjecture
� Twin prime conjecture
� Legendre’s conjecture

10 / 20



Does the density converge?
As x !1, the prime density �(x)=x diminishes at a slow rate. Reminiscent of an inverse
logarithmic decrease!

1 log(x)

π(x) x

0.0

0.1

0.2

0.3

0.4

0.5

0 50000 100000 150000 200000 250000
x11 / 20



The prime number theorem

� The asymptotic law of distribution of
prime numbers states that

lim
x!1

�(x)=x

1= log(x)
=

�(x)

x= log(x)
= 1

� From this, we have

�(x) �
x

log(x)

� We now have an approximation for the
prime counting function, which improves
as x increases. In particular,
limx!1 x= log(x) =1.

0.50

0.75

1.00

1.25

100 105 1010 1015 1020

x

π(
x)

(x
lo

g(
x)

)

12 / 20



The prime number theorem

� The asymptotic law of distribution of
prime numbers states that

lim
x!1

�(x)=x

1= log(x)
=

�(x)

x= log(x)
= 1

� From this, we have

�(x) �
x

log(x)

� We now have an approximation for the
prime counting function, which improves
as x increases. In particular,
limx!1 x= log(x) =1.

0.50

0.75

1.00

1.25

100 105 1010 1015 1020

x
π(

x)
(x

lo
g(

x)
)

12 / 20



Using software

Mathematics Software

ideation

results
Use software as a tool to…

� Explore and visualise ideas
� Confirm ideas numerically
� Communicate results

13 / 20



Beyond this course
Static websites served on GitHub; 3-D plots and animation; Plotting GIS shape files and maps;
Reproducible research (knitr); Text processing and analysis; Web and social media scraping;
Creating R packages; Web APIs; Parallel computing; Optimisation; Mathematical and
statistical modelling

14 / 20



Admin

Purpose of mathematical software

Getting started
Instructions
Software overview
MATLAB



Instructions

IMPORTANT
Check Canvas for detailed instructions regarding software installation and sign up procedures.

Important points:
� Use UBD e-mail in most cases to obtain Education Benefits
� Pick a suitable username (one that you won’t be embarassed to use in a few years time!)
� Practice safe and secure passwords
� When using Lab PCs, best to create a personal folder and keep all your work files in there.
� Recommended to use USB drives (make sure they’re clean!) or some cloud service

(Dropbox, Sharepoint, Google Drive, etc.)

15 / 20



Software overview

1. MATLAB–more details in the upcoming slides.
2. RStudio Desktop

� RStudio is installed on campus computers.
� It is free to install on your personal

computers–https://www.rstudio.com/products/rstudio/download/
� You may also need to install the R language too, depending on your system. Do a Google

search for ‘R Windows download’ or similar.
3. Git, github.com and GitHub Desktop

� Please sign up for an account at github.com/signup using your UBD e-mail.
� You will be invited to join the course organization (sm2302) in due course.
� Assignments will be distributed and collected via GitHub.

4. Overleaf.com
� Please sign up for an account at https://www.overleaf.com/register

16 / 20

https://www.rstudio.com/products/rstudio/download/
https://www.overleaf.com/register


MATLAB

� MATLAB is a high-level language and interactive environment for numerical computation,
visualization and programming.

� Analyze data
� Develop algorithms
� Create models and applications

� We will reinforce some calculus concepts and its applications using MATLAB, such as
� Numerical differentiation
� Numerical Integration
� Root-finding methods

17 / 20



Software

MATLAB is installed in the campus computer labs. However, if you wish to work from home or
on your laptop, you can either

1. use MATLAB Online on your web browser; or
2. install MATLAB on your personal computer.

MATLAB Campus-wide suite
To install or use MATLAB on your web browser, you need to create a Mathworks account using
your UBD e-mail. You can access the UBD campus-wide suite using your mathworks account.
Please refer to the MATLAB individual CWL installation guide document.

18 / 20



MATLAB Online

https://matlab.mathworks.com
19 / 20

https://matlab.mathworks.com


MATLAB Graphical Interface

� Command window
� Workspace
� Current folder
� Command history
� Editor

20 / 20


	Admin
	Getting started
	Module contents

	Purpose of mathematical software
	Getting started
	Instructions
	Software overview
	MATLAB


